Acapillary electrochromatography (CEC) synergistic enantioseparation system based on a novel nanomaterial synthesized by chiral molecularly imprinted polymers (CMIPs) and chiral metal organic frameworks (CMOFs) was developed. Compared with CMIPs and CMOFs alone, the enantioseparation performance of ofloxacin (OFL)of the CEC with the novel nanomaterial as stationary phases was greatly improved. CMOFs with chiral recognition ability have synergize with CMIPs to greatly improve the chiral selectivity of the novel stationary phases in CEC.As a proof-of-concept demonstration, a coated capillary column was prepared by a sol-gel method using S-OFL (template), iron-based cyclodextrin MOF (Fe-CD-MOF, a CMOF), 3-aminopropyltriethoxysilane (functional monomer), and tetraethyl orthosilicate (cross-linking agent). Then, the newly constructed CEC system has excellent enantioseparation performance of OFL with a resolution of 3.92. Finally, computerized molecular docking revealed that the difference in the binding ability of Fe-CD-MOF to ofloxacin enantiomers was an important mechanism for CEC chiral separation. This innovative development of synergistic chiral stationary phases based on CMOFs and CMIPs creates a highly efficient potential direction for enantiomer separation.