This study aimed to understand the ability of fixed-bearing posterior cruciate ligament (PCL)-retaining implants to maintain functionality of the PCL in vivo. To achieve this, elongation of the PCL was examined in six subjects with good clinical and functional outcomes using 3D kinematics reconstructed from video-fluoroscopy, together with multibody modelling of the knee. Here, length-change patterns of the ligament bundles were tracked throughout complete cycles of level walking and stair descent. Throughout both activities, elongation of the anterolateral bundle exhibited a flexion-dependent pattern with more stretching during swing than stance phase (e.g., at 40° flexion, anterolateral bundle experienced 3.9% strain during stance and 9.1% during swing phase of stair descent). The posteromedial bundle remained shorter than its reference length (defined at heel strike of the level gait cycle) during both activities. Compared with loading patterns of the healthy ligament, postoperative elongation patterns indicate a slackening of the ligament at early flexion followed by peak ligament lengths at considerably smaller flexion angles. The reported data provide a novel insight into in vivo PCL function during activities of daily living that has not been captured previously. The findings support previous investigations reporting difficulties in achieving a balanced tension in the retained PCL.
Read full abstract