In this paper, a fast and efficient analytical strategy was proposed that chemometrics assisted with excitation-emission fluorescence matrices was used to quantify carbaryl (CAR) and thiabendazole (TBZ) in peach, soil and sewage. Even if there are serious overlapped peaks and unknown interferences in fluorescence analysis, the second-order calibration method based on alternating trilinear decomposition (ATLD) algorithm can be used to analyze CAR and TBZ in peach, soil and sewage. The recoveries of CAR and TBZ in peach are 110.4% and 99.7% and their standard deviations are lower than 2.1% and 0.3%, respectively. In addition, the accuracy of the method was assessed with figures of merit as well as intra-day and inter-day precision. The limit of detection, the limit of quantitation of CAR and TBZ in peach are 1.2 ng mL−1 and 0.3 ng mL−1, 3.5 ng mL−1 and 0.8 ng mL−1, respectively. And their root-mean-square error of prediction are 17.0 ng mL−1 and 5.0 ng mL−1 and there are high sensitivity and selectivity in this method. Meanwhile, the results obtained by ATLD algorithm were compared with those obtained by the self-weighted alternate trilinear decomposition algorithm (SWATLD) and the parallel factor analysis (PARAFAC) algorithm, and statistical methods such as the t-test, F-test and the elliptic joint confidence region were used to evaluate for analysis. There were no significant differences among these methods. At last, high performance liquid chromatography-fluorescence detector (HPLC-FLD) was used to evaluate the accuracy and reliability of the proposed method. These results are satisfactory and indicate that the proposed method can be used for accurate and rapid determination of pesticides in complex systems.
Read full abstract