Abstract

In this study, a series of green, interference-free fluorimetric detection methods of the excitation-emission matrix coupled with the second-order calibration methods were proposed for the determination of ibrutinib and pralatrexate in various complicated biological fluids. The second-order advantage of the proposed method can overcome the problem of poor selectivity caused by the wide spectra of the fluorescence method. Even in the presence of uncalibrated interferences and severe peak overlap, the signal of pure substance and accurate quantitative results were still obtained. The average recoveries of the three methods were 94.5–104.9% for Alternating Trilinear Decomposition (ATLD) algorithm, 95.5–105.8% for Alternating Normalization Weighted Error (ANWE) algorithm and 94.4–105.7% for Parallel Factor Analysis (PARAFAC) algorithm, respectively. For ATLD, ANWE and PARAFAC, the relative standard deviations (RSD) were lower than 9.2%, 6.8% and 9.2%, and the RMSEPs were less than 8.1, 8.4 and 8.6 ng mL−1, respectively. In addition, the elliptic joint confidence region (EJCR) was adopted to further prove the accuracy of the three methods. The results showed that the three methods can accurately be quantified without significant difference. Good figures of merit parameters were also obtained. Among them, the limit of detection (LOD) and limit of quantification (LOQ) of ibrutinib and pralatrexate were in the range of 0.11–0.76 ng mL−1 and 0.21–1.12 ng mL−1, respectively, which were lower than the corresponding blood concentrations. These results indicate that the proposed method provides a promising, alternative and universal analysis strategy for clinical drug monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.