The author proposes two sets of closedanalytic functions for the approximate calculus of thecomplete elliptic integrals of the first and secondkinds in the normal form due to Legendre, therespective expressions having a remarkablesimplicity and accuracy. The special usefulness of theproposed formulas consists in that they allowperforming the analytic study of variation of thefunctions in which they appear, by using thederivatives. Comparative tables including theapproximate values obtained by applying the two setsof formulas and the exact values, reproduced fromspecial functions tables are given (all versus therespective elliptic integrals modulus, k = sin ). It is tobe noticed that both sets of approximate formulas aregiven neither by spline nor by regression functions,but by asymptotic expansions, the identity with theexact functions being accomplished for the left end k= 0 ( = 0) of the domain. As one can see, the secondset of functions, although something more intricate,gives more accurate values than the first one andextends itself more closely to the right end k = 1 ( =90) of the domain. For reasons of accuracy, it isrecommended to use the first set until = 70.5 only,and if it is necessary a better accuracy or a greaterupper limit of the validity domain, to use the secondset, but on no account beyond = 88.2.
Read full abstract