Maximal couplings are (probabilistic) couplings of Markov processes such that the tail probabilities of the coupling time attain the total variation lower bound (Aldous bound) uniformly for all time. Markovian (or immersion) couplings are couplings defined by strategies where neither process is allowed to look into the future of the other before making the next transition. Markovian couplings are typically easier to construct and analyze than general couplings, and play an important role in many branches of probability and analysis. Hsu and Sturm, in a preprint circulating in 2007, but later published in 2013, proved that the reflection-coupling of Brownian motion is the unique Markovian maximal coupling (MMC) of Brownian motions starting from two different points. Later, Kuwada (Electron J Probab 14(25), 633–662, 2009) proved that the existence of a MMC for Brownian motions on a Riemannian manifold enforces existence of a reflection structure on the manifold. In this work, we investigate suitably regular elliptic diffusions on manifolds, and show how consideration of the diffusion geometry (including dimension of the isometry group and flows of isometries) is fundamental in classification of the space and the generator of the diffusion for which an MMC exists, especially when the MMC also holds under local perturbations of the starting points for the coupled diffusions. We also describe such diffusions in terms of Killing vectorfields (generators of isometry groups) and dilation vectorfields (generators of scaling symmetry groups). This permits a complete characterization of those possible manifolds and their diffusions for which there exists a MMC under local perturbations of the starting points of the coupled diffusions. For example, in the time-homogeneous case it is shown that the only possible manifolds that may arise are Euclidean space, hyperbolic space and the hypersphere. Moreover the permissible drifts can then derive only from rotation isometries of these spaces (and dilations, in the Euclidean case). In this sense, a geometric rigidity phenomenon holds good.