In literature, several strong designated verifier signature (SDVS) schemes have been devised using elliptic curve bilinear pairing and map-topoint (MTP) hash function. The bilinear pairing requires a super-singular elliptic curve group having large number of elements and the relative computation cost of it is approximately two to three times higher than that of elliptic curve point multiplication, which indicates that bilinear pairing is an expensive operation. Moreover, the MTP function, which maps a user identity into an elliptic curve point, is more expensive than an elliptic curve scalar point multiplication. Hence, the SDVS schemes from bilinear pairing and MTP hash function are not efficient in real environments. Thus, a cost-efficient SDVS scheme using elliptic curve cryptography with pairingfree operation is proposed in this paper that instead of MTP hash function uses a general cryptographic hash function. The security analysis shows that our scheme is secure in the random oracle model with the hardness assumption of CDH problem. In addition, the formal security validation of the proposed scheme is done using AVISPA tool (Automated Validation of Internet Security Protocols and Applications) that demonstrated that our scheme is unforgeable against passive and active attacks. Our scheme also satisfies the different properties of an SDVS scheme including strongness, source hiding, non-transferability and unforgeability. The comparison of our scheme with others are given, which shows that it outperforms in terms of security, computation cost and bandwidth requirement.
Read full abstract