Multimodal multi-objective optimization problem (MMOP) is a frontier research problem, which can provide decision makers with more choices without making trade-offs. Many multimodal multi-objective evolutionary algorithms (MMOEAs) have been proposed to solve MMOP. However, most MMOEAs tend to prioritize the objective dominance of individuals in the process of individual selection, and only individuals with the same objective dominance will be considered the diversity, which leads to the loss of many promising solutions. To solve the above problem, this paper proposes a learnable self-supervised support vector machine (SVM) based multimodal multi-objective optimization algorithm (SVMEA). Support vector machine can learn the knowledge about distinguishing the advantages and disadvantages of individuals from the data in the existing training set and select individuals, in which the objective dominance of individuals is as important as diversity. Moreover, a crowding distance calculation method based on Manhattan distance is designed. Compared with the traditional method using Euclidean distance to calculate crowding distance, it can better evaluate the diversity of individuals in the decision space and assist the selection of elite solutions. Experimental results show that the proposed SVMEA is competitive with seven other advanced MMOEAs on 34 benchmark problems and a practical application problem.