Bumble bees are important pollinators in natural environments and agricultural farmlands, and they are in particular adapted to harsh environments like high mountain habitats. In these environments, animals are exposed to low temperature and face the risk of desiccation. The Eastern Himalayas are one of the recognized biodiversity hotspots worldwide. The area covers subtropical rainforest with warm temperature and high precipitation as well as high mountain ranges with peaks reaching up to 7,000m, shaping a diverse floral and faunal community at the different elevational zones. To identify possible adaptation strategies, we investigated the cuticular hydrocarbon profiles of four bumble bee species occurring at different elevational ranges in Arunachal Pradesh, the northeastern most state in India. At 17 locations along an elevational gradient, we collected workers of two species from lower elevations (B. albopleuralis and B. breviceps; ~ 100m - 3,000m asl) and two species from higher elevations (B. prshewalskyi and B. mirus; ~ 2,800m - 4,500m asl). The CHC profiles of all four species showed a significant degree of variation in the composition of hydrocarbons, indicating species specificity. We also found clear correlation with elevation. The weighted mean chain length of the hydrocarbons significantly differed between the low and high elevation species, and the proportion of saturated hydrocarbons in CHC profiles significantly increased with the elevational range of the bumble bee species. Our results indicate that bumble bees living at high elevations reduce the risk of water loss by adapting their CHC composition on their cuticle, a phenomenon that has also been found in other insects like ants and fruit flies.