BackgroundThe triglyceride glucose (TyG) index, TyG-body mass index (TyG-BMI), and triglyceride-density lipoprotein cholesterol ratio (TG/HDL-C) are substitute indicators for insulin resistance (IR). This study aimed to compare the predictive value of these indicators for 5-year mortality in critically ill patients with chronic heart failure (CHF).MethodsCritically ill patients with CHF were identified from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) III and IV databases. The primary outcome was 5-year mortality. The relationship between the three indices and mortality risk was determined using multivariate Cox proportional hazards models, Kaplan–Meier (K‒M) analysis and restricted cubic splines analysis. A receiver operating characteristic (ROC) curve was generated to compare the ability of the three indices to predict mortality. Finally, whether the IR indices would further increase the predictive ability of the basic model including baseline variables with a significance level between survivors and non-survivors was evaluated by ROC curve.ResultsAltogether, 1329 patients with CHF were identified from the databases. Cox proportional hazards models indicated that the TyG index was independently associated with an elevated risk of 5-year mortality (hazard ratio [HR], 1.56; 95% confidence interval [CI] 1.29–1.9), while the TyG-BMI index and TG/HDL-C level were significantly associated with 5-year mortality, with an HR (95% CI) of 1.002 (1.000–1.003) and 1.01 (1.00–1.03), respectively. The K–M analysis revealed that the cumulative incidence of all-cause 5-year death increased with increasing quartiles of the TyG index, TyG-BMI index, or TG/HDL-C ratio. According to the ROC curve, the TyG index outperformed the TyG-BMI and TG/HDL-C ratio at predicting all-cause 5-year mortality (0.608 [0.571–0.645] vs. 0.558 [0.522–0.594] vs. 0.561 [0.524–0.598]). The effect of the TyG index on all-cause mortality was consistent across subgroups, with no significant interaction with randomized factors. Furthermore, adding the TyG index to the basic model for 5-year mortality improved its predictive ability (area under the curve, 0.762 for the basic model vs. 0.769 for the basic model + TyG index); however, the difference was not statistically significant.ConclusionAs continuous variables, all three indices were significantly associated with 5-year mortality risk in critically ill patients with CHF. Although these IR indices did not improve the predictive power of the basic model in patients with CHF, the TyG index appears to be the most promising index (vs. TyG-BMI and TG/HDL-C ratio) for prevention and risk stratification in critically ill patients with CHF.