In Prince Edward Island, Canada, widespread intensive potato production has contributed to elevated nitrate concentrations in groundwater and streams, and eutrophic or anoxic conditions occur regularly in several estuarine systems. In this research, the stable isotopes of nitrogen and oxygen in nitrate in intertidal groundwater discharge and stream water were used, in conjunction with water quality and quantity data and land use information, to better understand the characteristics of nitrate delivered to two small estuaries with contrasting land use in their contributory catchments. Most of the water samples collected during the two-year study had isotopic signatures that fell in the range expected for nitrate derived from ammonium-based fertilizers (26.5 % of the samples) or in the overlapping range formed between ammonium-based fertilizers and nitrate derived from soil (64 % of the samples). Overall, isotopic signatures spanned over relatively narrow ranges, and correlations with other water quality parameters, or catchment characteristics, were weak. Nitrate in groundwater discharge and surface water in the Trout River catchment exhibited significantly different isotopic signatures only for the nitrogen isotope, while in the McIntyre Creek catchment groundwater discharge and surface water had similar isotopic signatures. When the isotopic results for the waters from the two catchments were compared, the surface waters were found to be similar, while the isotopic signatures of nitrate in groundwater were distinct only for the nitrogen isotope. Denitrification in the two study catchments was not evident based on the isotopic results for nitrate; however, in the case of the Trout River catchment, where a small freshwater pond exists, an average nitrate load reduction of 14 % was inferred based on a comparison of nitrate loads entering and leaving the pond. Overall, it appears that natural attenuation processes, occurring either in the streams or groundwater flow systems, do not significantly reduce nitrate loading to these estuaries.