Abstract

Stichococcus, a genus of green algae, distributes in ice-free areas throughout Antarctica. To understand adaptive strategies of Stichococcus to permanently cold environments, the physiological responses to temperature of two psychrotolerants, S. bacillaris NJ-10 and S. minutus NJ-17, isolated from rock surfaces in Antarctica were compared with that of one temperate S. bacillaris FACHB753. Two Antarctic Stichococcus strains grew at temperature from 4 to 25°C, while the temperate strain could grow above 30°C but could not survive at 4°C. The photosynthetic activity of FACHB753 at lower than 10°C was less than that of Antarctic algae. Nitrate reductase in NJ-10 and NJ-17 had its optimal temperature at 20°C, in comparison, the maximal activity of nitrate reductase in FACHB753 was found at 25°C. When cultured at 4-15°C a large portion of unsaturated fatty acids in the two Antarctic species was detected and the regulation of the degree of unsaturation of fatty acids by temperature was observed only above 15°C, though the content of the major unsaturated fatty acid αC18:3 in FACHB753 decreased with the temperatures elevated from 10 to 25°C. Elevated nitrate reductase activity and photosynthetic rates at low temperatures together with the high proportion of unsaturated fatty acids contribute to the ability of the Antarctic Stichococcus to thrive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call