Abstract Previous studies have suggested that the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model is unable, in its default configuration, to adequately resolve the capping inversions that are commonly found in the warm-season, thunderstorm-supporting environments of the central United States. Since capping inversions typically form in environments of synoptic-scale subsidence, this study tests the hypothesis that this degradation results, in part, from implicit numerical damping of shorter-wavelength features associated with the model-default third-order-accurate vertical advection finite-differencing scheme. To aid in testing this hypothesis, two short-range, deterministic, convection-allowing model forecasts, one using the default third-order-accurate vertical advection finite-differencing scheme and another using a fourth-order-accurate differencing scheme (which lacks implicit damping but is numerically dispersive), are conducted for 25 days during the 2017 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Model-derived vertical profiles at lead times of 11 and 23 h are validated against available rawinsonde observations released in regions located in the Storm Prediction Center’s 0600 UTC day 1 convection outlook’s “general thunderstorm” forecast area. The fourth-order-accurate vertical advection finite-differencing scheme is shown to not result in statistically significant improvements to model-forecast capping inversions or, more generally, the vertical thermodynamic profile in the lower troposphere. Instead, the fourth-order-accurate differencing scheme primarily impacts the representation of longer-wavelength features already reasonably well resolved by the model. The analysis does, however, provide quantitative evidence over a large sample that, on average, the WRF-ARW model forecasts capping inversions that are too weak, with negative buoyancy spread out over too deep of a vertical layer, compared to observations.