Abstract
Abstract This study evaluates the influence of planetary boundary layer parameterization on short-range (0–15 h) convection initiation (CI) forecasts within convection-allowing ensembles that utilize subsynoptic-scale observations collected during the Mesoscale Predictability Experiment. Three cases, 19–20 May, 31 May–1 June, and 8–9 June 2013, are considered, each characterized by a different large-scale flow pattern. An object-based method is used to verify and analyze CI forecasts. Local mixing parameterizations have, relative to nonlocal mixing parameterizations, higher probabilities of detection but also higher false alarm ratios, such that the ensemble mean forecast skill only subtly varied between parameterizations considered. Temporal error distributions associated with matched events are approximately normal around a zero mean, suggesting little systematic timing bias. Spatial error distributions are skewed, with average mean (median) distance errors of approximately 44 km (28 km). Matched event cumulative distribution functions suggest limited forecast skill increases beyond temporal and spatial thresholds of 1 h and 100 km, respectively. Forecast skill variation is greatest between cases with smaller variation between PBL parameterizations or between individual ensemble members for a given case, implying greatest control on CI forecast skill by larger-scale features than PBL parameterization. In agreement with previous studies, local mixing parameterizations tend to produce simulated boundary layers that are too shallow, cool, and moist, while nonlocal mixing parameterizations tend to be deeper, warmer, and drier. Forecasts poorly resolve strong capping inversions across all parameterizations, which is hypothesized to result primarily from implicit numerical diffusion associated with the default finite-differencing formulation for vertical advection used herein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.