A wall-modelled large-eddy simulation (WMLES) method previously validated against laboratory experiments is applied to a real engine disc cavity geometry with surface and air temperatures representative of maximum power conditions. An appropriate set of independent nondimensional parameters describing the problem is defined and the sensitivities to these parameters are investigated by independently varying each parameter in the WMLES. Effects of a change in disc temperature distribution and a reduction in radius of the downstream disc are also investigated. The flow and heat transfer mechanisms predicted are very similar to those found for the research rig configuration although rotating cavity flow structures with two or more lobes are found for the engine geometry rather than the single-lobed structures shown in previous work. The simulations are compared with an elementary model giving further insight into scaling of the flow and heat transfer with operating conditions. The model assumes a well-mixed core flow in the cavity with constant rothalpy, relates shroud heat transfer to that of natural convection under gravity for high Rayleigh number, and relates disc heat transfer to conduction across unsteady Ekman layers. An energy balance for the cavity is used to obtain an effective mass flow exchange rate between the axial throughflow and the disc cavity to the disc and shroud heat transfer and core temperature. The model is considered to give a useful basis for engineering calculations involving correlation and extrapolation of WMLES and experimental results.
Read full abstract