On-chip electrostatic discharge (ESD) protection poses a challenge in the chip fabrication process. In this study, a novel electric fuse (E-fuse) device featuring a simple structure of Ni metal on a SiO2 dielectric for ESD protection was proposed, and the physical mechanism of its operation was investigated in detail. Experimental evaluations, utilizing transmission line pulse (TLP) testing and fusing performance analyses, reveal that the E-fuse, constructed with a Ni metal layer measuring 5 μm in width, 100 μm in length, and 5 nm in thickness, achieved a significant ESD protection voltage of 251 V (VHBM) and demonstrates low-voltage fusing at a bias voltage of 7 V. Compared to traditional ESD protection devices, the E-fuse boasts a smaller size and removability. To assess fusing performance, devices of varying sizes were tested using a fusing lifetime model. This study supports both theoretical and empirical evidence, enabling the adoption of cost-effective, straightforward E-fuse devices for ESD protection.
Read full abstract