A bacterial consortium capable of utilising metal cyanides as a source of nitrogen was used to develop a microbiological process for the detoxification of metal cyanides (viz. copper cyanide and zinc cyanide) from electroplating waste water. Optimal conditions biodegradation of both the metal-cyanide compounds were pH 7.5, temperature 35°C, inoculum size 10 9 cells per ml and glucose or sugarcane molasses requirement of 5 mM or 0.6 ml/l, respectively. Metal precipitates obtained during metal-cyanide biodegradation were identified as metal-hydroxides. When the treatment was carried out in a 27 l rotating biological contactor (RBC) in continuous mode, the system could achieve >99.9% removal of 0.5 mM metal cyanide (ca. 52 mg/l cyanide and 30–40 mg/l copper/zinc) in 15 h with sugarcane molasses as carbon source. The RBC treated effluent was found to be safe for discharge in the environment as confirmed by chemical analysis and fish bioassay studies.
Read full abstract