Holographic polymer/liquid-crystal composites, which are periodically ordered materials with alternative polymer-rich and liquid-crystal-rich phases, have drawn increasing interest due to their unique capabilities of reconstructing colored three-dimensional (3D) images and enabling the electro-optic response. They are formed via photopolymerization induced phase separation upon exposure to laser interference patterns, where a fast photopolymerization is required to facilitate the holographic patterning. Yet, the fast photopolymerization generally leads to depressed phase separation and it remains challenging to boost the holographic performance via kinetics control. Herein, we disclose that the ketyl radical inhibition is able to significantly boost the phase separation and holographic performance by preventing the proliferated diffusion of initiating radicals from the constructive to the destructive regions. Dramatically depressed phase separation is caused when converting the inhibiting ketyl radical to a new initiating radical, indicating the significance of ketyl radical inhibition when designing high performance holographic polymer composites.