Abstract

Conventional display applications of liquid crystals utilize thin layers of mesogenic materials, typically less than 10 µm. However, emerging non-display applications will require thicker, i.e., greater than 100 µm, layers of liquid crystals. Although electro-optical performance of relatively thin liquid crystal cells is well-documented, little is known about the properties of thicker liquid crystal layers. In this paper, the electro-optical response of dual-frequency nematic liquid crystals is studied using a broad range (2–200 µm) of the cell thickness. Two regimes of electro-optical switching of dual-frequency nematics are observed and analyzed.

Highlights

  • Liquid crystal (LC) materials have become cornerstones of modern devices, with applications ranging from displays [1] to adaptive optics [2] to, more recently, radio-frequency (RF) and microwave and millimeter wave frequencies (MMW) electronics [3]

  • The phase shift is proportional to the thickness of the liquid crystal layer and its birefringence according to Equation (1) [4]:

  • Advanced liquid crystal devices will rely on fast-switching materials capable of producing a large phase shift

Read more

Summary

Introduction

Liquid crystal (LC) materials have become cornerstones of modern devices, with applications ranging from displays [1] to adaptive optics [2] to, more recently, radio-frequency (RF) and microwave and millimeter wave frequencies (MMW) electronics [3]. Their ability to change the orientation of molecules under the action of a biasing electric field along with an anisotropy of their properties revolutionized the display industry but opened a new frontier in the development of tunable and reconfigurable devices for non-display applications. A higher phase shift can be achieved by increasing the LC cell thickness or the LC birefringence.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.