The spin dynamics of dilute paramagnetic impurities embedded in a semiconductor GaAs channel of a conventional lateral spin valve has been investigated. It is observed that the electron spin of paramagnetic Mn atoms can be polarized electrically when driven by a spin valve in the antiparallel configuration. The transient current through the MnAs/GaAs/MnAs spin valve bears the signature of the underlying spin dynamics driven by the exchange interaction between the conduction band electrons in GaAs and the localized Mn electron spins. The time constant for this interaction is observed to be dependent on temperature and is estimated to be 80 ns at 15 K.
Read full abstract