We investigate high-order harmonic generations (HHGs) under comparison of Weyl cones in two types. Due to the hyperboloidal electron pocket structure, strong noncentrosymmetrical generations in high orders are observed around a single type-II Weyl point, especially at zero frequency. Such a remarkable DC signal is proved to have attributions from the intraband transition after spectral decomposition. Under weak pulse electric field, the linear optical response of a non-tilted Weyl cone is consistent with the Kubo theory. With extensive numerical simulations, we conclude that the non-zero chemical potential can enhance the even-order generations, from the slightly tilted system to the over-tilted systems. In consideration of dynamical symmetries, type-I and type-II Weyl cones also show different selective responses under the circularly polarized light. Finally, using a more realistic model containing two pairs of Weyl points, we demonstrate that paired Weyl points with opposite chirality can suppress the overall even-order generations.