Abstract

Interaction-enhanced carrier masses are central to the phenomenology of iron-based superconductors. Quantum oscillation measurements in the new unconventional superconductor YFe_{2}Ge_{2} resolve all four Fermi surface pockets expected from band structure calculations, which predict an electron pocket in the Brillouin zone corner and three hole pockets enveloping the centers of the top and bottom of the Brillouin zone. Carrier masses reach up to 20 times the bare electron mass and are among the highest ever observed in any iron-based material, accounting for the enhanced heat capacity Sommerfeld coefficient ≃100 mJ/mol K^{2}. Mass renormalization is uniform across reciprocal space, suggesting predominantly local correlations, as in the Hund's metal scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.