Photocatalytic reduction of CO2 exhibits unsatisfactory photocatalytic performance owing to the inefficient separation of photogenerated electron-hole pairs, low CO2 capture efficiency and limited visible light absorption on most photo-catalysts. Herein, TiF bridged IL-CuCQDs-F/TiO2 inverse opal composite (IO-CFTi) was constructed for boosting CO2 visible-photo reduction via slow photo effect. In this work, ethylenediaminetetraacetic acid (EDTA(Cu)) and imidazole ionic liquid 1-(2-Hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([HOEtMIM][BF4]) were employed to confine grow of IL-CuCQDs-F within TiO2 inverse opal supporter via TiF bonds connection. Unique IL-CuCQDs-F efficiently expended light absorption towards visible region, and the confined growth of IL-CuCQDs-F within the TiO2 inverse opal cavity achieved the photoelectric conversion and efficient CO2 capture. Moreover, their TiF bonding interface of IO-CFTi assisted photogenerated electron transportation from TiO2 to CO2 for its reduction in this system. Consequently, IO-CFTi achieved a substantially increased CO production rate of 78.1 μmol·h−1·g−1 with 98 % selectivity. This improved performance in CO2 photoreduction positions the nanocomposite as a promising material for preservation of the environment and conversion of energy.
Read full abstract