Abstract

Abstract A comprehensive investigation was conducted to explore the degradation mechanism of leakage current in SiC junction barrier Schottky (JBS) diodes under heavy ion irradiation. We propose and verify that the generation of stacking faults (SFs) induced by the recombination of massive electron--hole pairs during irradiation is the cause of reverse leakage current degradation based on experiments results. The irradiation experiment was carried out based on Ta ions with high linear energy transfer (LET) of 90.5 MeV/(mg/cm2). It is observed that the leakage current of the diode undergoes the permanent increase during irradiation when biased at 20% of the rated reverse voltage. Micro-PL spectroscopy and PL micro-imaging were utilized to detect the presence of SFs in the irradiated SiC JBS diodes. We combined the degraded performance of irradiated samples with SFs introduced by heavy ion irradiation. Finally, three-dimensional (3D) TCAD simulation was employed to evaluate the excessive electron–hole pairs (EHPs) concentration excited by heavy ion irradiation. It was observed that the excessive hole concentration under irradiation exceeded significantly the threshold hole concentration necessary for the expansion of SFs in the substrate. The proposed mechanism suggests that the process and material characteristics of the silicon carbide should be considered in order to reinforcing against the single event effect of SiC power devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.