Models of adsorbate dissociation by energetic electrons are generalized to account for activated sticking and chemisorption, and used to simulate the rate kinetics of electron beam induced chemical vapor deposition (EBID). The model predicts a novel temperature dependence caused by thermal transitions from physisorbed to chemisorbed states that govern adsorbate coverage and EBID rates at elevated temperatures. We verify these results by experiments that also show how EBID can be used to deposit high purity materials and characterize the rates and energy barriers that govern adsorption.
Read full abstract