Increasing anthropogenic activities within the catchment of River Tano continues to threaten the river water quality but data is limited. Seasonal variations in some physicochemical and nutrients water quality parameters of River Tano were studied between November, 2016 and October, 2017 using electrometric and standard methods. The objective was to assess changes in physicochemical parameters and nutrient concentrations with the season and to generate useful information for water quality managers and policy makers to ameliorate the problem. The results showed significantly higher rainy season values for all the nutrients and the physicochemical parameters studied. The source of River Tano recorded pH levels lower than WHO minimum permissible level for both seasons but got corrected after 7.2 km from the source. The river was also challenged in terms of colour (61.0±4.6 NTU), total phosphorus content (0.376±0.3 mg/L), total suspended solids (69.7±24 mg/L), turbidity (96.2±21 mg/L) and electrical conductivity (252±33 µS/cm) since the levels of these parameters exceeded the permissible levels for WHO. Some physicochemical parameters and nutrients correlated strongly to indicate a possible common source to the water body. Cluster analysis extracted two clusters of the seasonal sampling sites for physicochemical parameters and three clusters for nutrients also confirming their respective possible common sources to the river. It is recommended that the buffer zone policy must be enforced to avert further deterioration of the river water quality. Industries must be compelled to treat their effluent before discharging into water bodies