Effects of transverse static magnetic field on stimulated Raman scattering (SRS) of the beat wave excited by two counter-propagating lasers are studied. Two counter-propagating lasers with frequency difference, ω1∼ω2≥2ωp, drive a non resonant space charge beat mode at wave number k→0≈k→1+k→2 in a plasma, where k→1 and k→2 are wave vectors of lasers having frequencies ω1 and ω2, respectively. The driven beat wave acts as a pump for SRS and excites parametrically a pair of plasma wave (ω,k→) and side band electromagnetic wave (ω3,k→3) propagating in the sideward direction in such a way that momentum remains conserved. The growth rate of Raman process is maximum for side scattering at θs=π/2 for lower values of applied magnetic field (∼1 kG), which can be three fold by applying magnetic field ∼5.0 kG. Thus, optimum value of magnetic field can be utilized to achieve maximum electron acceleration in counter propagating geometry of beat wave acceleration by reducing the growth rate of Raman process.