In this research, a novel plasto-dynamic analytical and numerical modeling is developed for tube expansion during a high-strain rate forming process, such as electromagnetic and liquid shock tube forming. The analytical model is based on applying the impact mechanic and shell theories with introducing an effective load along with imposing high-order non-linearity of material behavior. The numerical model is also conducted by dynamic explicit finite element setup with considering an equivalent transient and traveling load. Both analytical and numerical models are compared with each other and validated with experimental measurements of different processes available in literature. The analytical model has satisfactorily acceptable prediction, especially for small strains, locations far from dies or supports, and for processes with high load-to-material resistance ratio and with less complicated interaction and loading nature. The numerical modeling is also effective if precise data input is provided. Several parameter studies are carried out, and conditions for achieving a high-performance forming process are discussed. The magnitude of total impulse and inertia force have significant roles, but traveling speed and profile shape of load have no considerable effects on plastic deformation. For AISI 316L, strain hardening and thermal softening have major and minor influences on material strength, respectively.
Read full abstract