Abstract

This paper presents the results of an experimental simulation of rupture development in heavily cavitating magma melt flow in volcanic conduits and its effect on the structure of explosive volcanic eruptions. The dynamics of the state of a layer of distilled water (similar in the density of cavitation nuclei to magma melt) under shock-wave loading was studied. The experiments were performed using electromagnetic hydrodynamic shock tubes (EM HST) with maximum capacitor bank energy of up to 100 J and 5 kJ. It was found that the topology of the rupture formed on the membrane surface did not change during its development. Empirical estimates were obtained for the proportion of the capacitor bank energy expended in the development of the rupture and the characteristic time of its existence. The study revealed a number of fundamentally new physical effects in the cavity dynamics in a cavitating medium: a cavitation “boundary layer” is formed on the surface of the quasi-empty rupture, which is transformed into a cluster of high energy density upon closure of the flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call