Increase in ore production volumes and the use of large-sized equipment contribute to the loss of ores during mining, which gives rise to the phenomenon of natural leaching. On the example of deposits of the Sadon ore cluster, the hazard of metallized mine effluents for living matter and humans is shown. Of the relatively young methods of mine water purification, the most promising is the combination of electrochemical softening of mine effluents with electrodialysis desalination and concentration. The improvement of environmental protection technologies is developing on the basis of the managed disposal of mining and processing waste as a generator of natural leaching. The results are presented related to the experimental study of the parameters of metals extraction from the mine effluents by electrodialysis desalination with simultaneous concentration. The mechanism is formulated related to the development of oxidative processes of sulfide minerals in the presence of carbon dioxide of the mine atmosphere with the occurrence of electrochemical bonds between the crystals and mineral grains. The process of electromembrane treatment of metal-containing wastes is detailed. It is shown that during the electrochemical decomposition of salt systems, associated commercial products are formed. The dynamics of pollution of the Ardon river washing the Sadon deposit is given. The chemical processes of leaching of lost ores are described. An installation for electrochemical wastewater treatment is recommended, and a quantitative assessment of its efficiency is given. It is noted that the processes of electrochemical wastewater treatment are adequate, described by linear graphs and subject to correction. It is shown that the drains of mines are hazardous for living matter. It is indicated that the improvement of environmental protection technologies will be developed in the direction of waste disposal of mining and processing. The general principle of mine water hazard reduction is a combination of electrochemical softening with electrodialysis desalination and concentration.
Read full abstract