Our previous work concluded that the application of force altered the physical structure of the activated carbon electrodes, which resulted in a decrease in the accessible surface area and a displacement of the electrolyte. In this work, the response that different carbon material electrodes exhibit to an applied force was evaluated. Activated carbon powders possess different porous structures, which would exhibit different behaviors when subjected to an applied force and after the release of that force. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to characterize the response behaviors of the different carbons. Furthermore, a porosimetry analysis was conducted on the carbon material of the electrode before and after the application of force. It was concluded that the application of force shifted the pore distribution toward overall smaller pores through a compression of the porous structure of the carbon. This resulted in a decrease in the more easily accessible surface area, which was exhibited as a decrease in the capacitance values as calculated from the cyclic voltammetry data. There was no longer sufficient time to access the now smaller powers at the given time scale of the cyclic voltammetry analysis, which negatively impacted the formation of the double layer.