Abstract

Ion adsorption onto high surface area microporous Carbide Derived Carbons (CDCs) with pore sizes in the sub-nanometer range was studied by means of the Electrochemical Impedance Spectroscopy (EIS) technique in two electrolytes, Tetraethylammonium Tetrafluoroborate (NEt 4BF 4) in Acetonitrile (AN) and in Propylene Carbonate (PC). Polarization at two bias voltages (0.5 V/Ref and −1 V/Ref) for EIS measurements enabled comparing the capacitive behaviors resulting from anions and cations adsorption, respectively, it was confirmed that the effective size of NEt 4 + is bigger than the one of BF 4 −. Higher transport limitation was then observed for cations and was exalted in PC-based electrolyte. Although slow ion transport kinetics, it was found that the low frequency vertical line observed on the Nyquist plots was preserved meaning that carbon electrodes were fully charged. This study confirmed the importance of choosing an electrode carbon pore size adapted to the effective ion size. Finally, the best performances would be got in 1.5 M NEt 4BF 4 AN-based electrolyte with a 0.76 nm pore size negative electrode and a 0.68 nm pore size positive electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call