There is a burgeoning interest in the development of a green method of ammonia synthesis; ammonia, already critical for fertilisers in the agricultural industry, is also being touted as a possible future energy vector or carbon-free fuel. The current method of production - the Haber Bosch process - is environmentally damaging and energy intensive but to date no viable alternative has been demonstrated. An electrochemical method operating under ambient conditions would be particularly attractive, as it would enable ammonia to be produced on a decentralised basis on-site and on-demand.1 Thus far, amongst solid electrodes, only lithium and calcium based electrodes in organic electrolytes can unequivocally reduce nitrogen to ammonia.2-4 Even so, at present, there is ample room for improvement.To investigate this reaction, we use a combination of electrochemical experiments, cryo-microscopy, infrared spectroscopy, electrochemistry mass spectrometry, time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy and density functional theory. By drawing from the adjacent fields of enzymatic nitrogen reduction and battery science, we will aim to build a holistic picture of the factors controlling nitrogen reduction.I will explore the role of the individual electrolyte components, including the cation, the salt, solvent and proton carrier.5- 7 On the basis of the insight, I will propose avenues towards higher rates and higher efficiencies in electrochemical nitrogen reduction.1 Westhead, O., Barrio, J., Bagger, A., Murray, J. W., Rossmeisl, J., Titirici, M.-M., Jervis, R., Fantuzzi, A., Ashley, A. & Stephens, I. E. L. Nature Reviews Chemistry 7, 184, (2023).2 Andersen, S. Z., Colic, V., Yang, S., Schwalbe, J. A., Nielander, A. C., McEnaney, J. M., Enemark-Rasmussen, K., Baker, J. G., Singh, A. R., Rohr, B. A., Statt, M. J., Blair, S. J., Mezzavilla, S., Kibsgaard, J., Vesborg, P. C. K., Cargnello, M., Bent, S. F., Jaramillo, T. F., Stephens, I. E. L., Norskov, J. K. & Chorkendorff, I. Nature 570, 504, (2019).3 Westhead, O., Jervis, R. & Stephens, I. E. L. Science 372, 1149, (2021).4 Fu, X., Niemann, V. A., Zhou, Y., Li, S., Zhang, K., Pedersen, J. B., Saccoccio, M., Andersen, S. Z., Enemark-Rasmussen, K., Benedek, P., Xu, A., Deissler, N. H., Mygind, J. B. V., Nielander, A. C., Kibsgaard, J., Vesborg, P. C. K., Nørskov, J. K., Jaramillo, T. F. & Chorkendorff, I. Nature Materials , (2023).5 Bagger, A., Wan, H., Stephens, I. E. L. & Rossmeisl, J. ACS Catalysis 11, 6596, (2021).6 Spry, M., Westhead, O., Tort, R., Moss, B., Katayama, Y., Titirici, M.-M., Stephens, I. E. L. & Bagger, A. ACS Energy Letters , 1230, (2023).7 Westhead, O., Spry, M., Bagger, A., Shen, Z., Yadegari, H., Favero, S., Tort, R., Titirici, M., Ryan, M. P., Jervis, R., Katayama, Y., Aguadero, A., Regoutz, A., Grimaud, A. & Stephens, I. E. L. Journal of Materials Chemistry A , (2023).
Read full abstract