Abstract

Electrochemical nitrogen reduction reaction (eNRR) is recognized as an alternative green approach to the traditional energy-demanding and fossil-based catalytic processes (e.g. Haber Bosch). In this study, we implement eNRR in a proton exchange membrane (PEM) water electrolyzer in which nitrogen (N2) is fed in the cathode. This operation mode has been suggested as a way to overcome mass transfer limitations, however, there is a lack of developed evaluation protocols for appropriate product identification. Herein, we exemplify the spirit of the evaluation protocols for gas phase operation at the device level with a combination of online product analysis and isotopic labeling. Our protocol involves control experiments by replacing the cathodic N2 feed with (i) inert gas (i.e. Ar) and (ii) isotopic labeled 15N2 and by replacing the anodic water feed with isotopic labeled D2O. Taking advantage of the gas phase operation in the cathode product analysis is realized with online techniques i.e. quadrupole mass-spectrometer (QMS) and Fourier transform infrared (FTIR) spectrometer. This allows us to verify the production of diazene (N2H2) resulted from genuine N2 reduction, rather than from nitrogen-containing contaminants. Our methodology provides a pathway for how the false positive results can be eliminated in the gas phase study and a platform for follow-up studies using promising or exotic catalysts in the cathode, especially to validate the eNRR products or discover more products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.