Graphene is one of the nanoscale materials that has attracted many researchers to continue in-depth study on its unique properties where both the graphene oxide (GO) and electrochemical reduced graphene oxide (ERGO) are the derivatives of graphene. GO and ERGO can be further modified chemically for many types of application such as sensor and water filter membrane. However, to restore the electrical property of graphene, GO should be reduced to ERGO. There are several types of reduction methods which are fast to produce good quality and high yield of graphene material. However, those methods use toxic chemicals to reduce GO which can bring negative impact to both human and environment. Therefore, an electrochemical approach can be carried out to solve this issue. This study presents the electrochemical synthesis of GO and electrochemical reduction of ERGO. All characterizations were conducted by using Fourier transform infrared (FTIR) spectroscopy, X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).