Abstract

Pd-Co alloy nanoparticles were synthesized on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. The morphological structure, chemical composition, and crystallinity of the afforded ErGO/Pd-Co catalyst were examined by various techniques, including transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. The Pd-Co alloy nanoparticles were evenly distributed on the ErGO sheet and had a narrow size distribution, with an average particle size of 4.25 nm. The ORR activity of the as-prepared ErGO/Pd-Co alloy catalyst was evaluated by cyclic voltammetry, linear sweep voltammetry, rotating disk electrode, and rotating ring disk electrode techniques in an alkaline electrolyte. The ErGO/Pd-Co catalyst exhibits a very high electrocatalytic activity in ORR with the mass activity more than 2.0 times of the commercial 20% Pt/C due to the synergistic catalytic effect of both ErGO and Pd-Co nanoparticles. Electrocatalytic kinetics investigation shows that, the ORR on the ErGO/Pd-Co catalyst proceeds through four electrons transferred mechanism with negligible amount of peroxide species. Moreover, the ErGO/Pd-Co shows an excellent methanol tolerance than the commercial 20% Pt/C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call