Abstract
We herein describe a novel electrochemical strategy to detect hydrogen peroxide (H2O2) by utilizing the peroxidase-mimicking activity of cerium oxide nanoparticles (CeO2 NP) and reduced graphene oxide (rGO). Particularly, CeO2 NP/rGO nanocomposites were deposited on the commercial electrode by a very convenient and direct electrochemical reduction of graphene oxide. Due to the peroxidase-mimicking activity of CeO2 NP and the outstanding electrochemical properties of reduced graphene oxide, the reduction current of H2O2 was greatly enhanced. Based on this strategy, we reliably determined H2O2 down to 1.67 μM with excellent specificity and further validated its practical capabilities by robustly detecting H2O2 present in heterogeneous human serum samples. We believe that this work could serve as a new facile platform for H2O2 detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.