In this work, a high-accuracy setup was developed for the characterization of thermoelectric devices in the temperature range of 300-900 K. The output parameters of the thermoelectric devices, including the thermoelectric efficiency Z, Seebeck coefficient S, and internal resistance r, were measured. A technique, block diagram, and computer tools for automated measurement and preliminary processing of experimental data were developed for automated studies of the properties of semiconductor materials and thermoelectric power conversion modules. The developed tools were shown to have high efficiency. The complexity of the process of measuring the main electrical parameters of semiconductor materials was significantly reduced, and the accuracy of the obtained results was increased.