Electrical injection of spin-polarized electrons from ferromagnets into semiconductors has been generally demonstrated through a tunneling process with insulator barrier layers that can dominate the device performance, including the electric power at the electrodes. Here, we show an efficient spin injection technique for a semiconductor using an atomically controlled ferromagnet/ferromagnet/semiconductor heterostructure with low-resistive Schottky-tunnel barriers. On the basis of symmetry matching of the electronic bands between the top highly spin-polarized ferromagnet and the semiconductor, the magnitude of the spin signals in lateral spin-valve devices can be enhanced by up to one order of magnitude compared to those obtained with conventional ferromagnet/semiconductor structures. This approach provides a new solution for the simultaneous achievement of highly efficient spin injection and low electric power at the electrodes in semiconductor devices, leading to novel semiconductor spintronic architectures at room temperature.