The principle of saving energy and converting waste heat into valuable resources is a core concept. Heat exchange systems are significantly compromised by microbial fouling, which impedes heat transfer and increases energy consumption. This study investigated the coupling effects of micro/nano-scale surface modifications and the application of electric currents as a novel approach to inhibit microbial fouling. Smooth copper surface, electrochemical deposition (ECD) surface, and Nickel-Phosphorus-Polytetrafluoroethylene (Ni-P-PTFE) modified surface were tested and compared. Firstly, we analyzed the average heat transfer coefficient under clean conditions, taking into account different surface characteristics. Then, we employed a series of fouling experiments to evaluate the anti-biofouling performance of smooth copper surfaces, ECD surfaces, and Ni-P-PTFE surfaces. The assessment involved flow cytometry, Scanning Electron Microscopy (SEM) and measurements of thermal resistance. Finally, we investigated the effect of external electric current on microbial fouling mitigation. Results show that the ECD surface exhibited an enhanced heat transfer and a poor fouling resistance, while the Ni-P-PTFE surface demonstrated an excellent fouling resistance and a minimal increase in thermal resistance. The application of a low direct current density at 0.51 mA/cm² significantly reduced microbial viability on all surfaces. A higher electric current can further inhibit microbial adhesion and proliferation, enhancing the anti-fouling capability of the surfaces. Compared to surfaces without electric current, the smooth copper surface, ECD, and Ni-P-PTFE surfaces at 5.1 mA/cm² displayed a reduction in thermal resistance by 45.7%, 36.8%, and 38.1%, respectively. At 51 mA/cm², the reduction in thermal resistance for smooth copper surface, ECD, and Ni-P-PTFE surfaces was 75.7%, 78.2%, and 57.1%, respectively. This comprehensive study has validated the potential of combining micro/nano-scale surface modifications with electric current application as an effective strategy for enhancing heat transfer efficiency and anti-fouling properties of heat exchange systems.
Read full abstract