Abstract

AbstractA promising optoelectronic device for light sensing in both the UV and Vis regions is fabricated. This device consists of a nanocomposite resembling coral reefs, termed AgI/polypyrrole‐iodide (AgI/Ppy‐I). The resulting nanocomposite exhibits a hierarchical structure wherein larger particles, comprising smaller particles ~45 nm and an optical bandgap measuring 2.4 eV, form a coral reef‐like morphology. The sensitivity estimation of this constructed optoelectronic device relies on evaluating the current density (Jph) values. Under illumination, a remarkable augmentation in current density (Jph = 0.46 mA cm−2) with a promising value compared to the dark condition's 0.12 mA cm−2. The optical characteristics of this nanocomposite make it highly conducive to efficient UV–Vis light sensing. The values of D (detectivity), reflecting the device's sensitivity, are notably high at 4 × 108 and 3.82 × 108 Jones in the UV and Vis regions, correspondingly. The potential of this photodetector is reinforced by the computed R‐values, which denote the device's responsivity. With values of 1.8 and 1.72 mA W−1 across these two optical regions, correspondingly, it showcases the nanocomposite's effectiveness in transforming incident light into electrical current. Moreover, the appeal of this photodetector extends beyond its performance characteristics. Its cost‐effectiveness, eco‐friendliness, straightforward preparation methodology, scalability for mass production, and high stability collectively. The versatility of this material, coupled with its advantageous attributes, opens avenues for its widespread application, catering to the diverse needs of industries and contributing to the accessibility of efficient optoelectronic devices for a broader audience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.