Although lactation mastitis (LM) has been extensively researched, the incidence rate of LM remains a salient clinical problem. To reduce this incidence rate and achieve a better prognosis, early and specific quantitative indicators are particularly important. It has been found that milk electrolyte concentrations (chloride, potassium, and sodium) and electrical conductivity (EC) significantly change in the early stages of LM in an animal model. Several studies have evaluated EC for the detection of subclinical mastitis in cows. EC, chloride, and sodium content of milk were more accurate for predicting infection status than were other variables. In the early stages of LM, lactic sodium, chloride, and EC increase, but potassium decreases. However, these indicators have not been reported in the diagnosis of LM in humans. This review summarizes the pathogenesis and the mechanism of LM in terms of milk electrolyte concentration and EC, and aim to provide new ideas for the detection of sub-clinical mastitis in humans.