With the increasing adoption of electric vehicles (EVs), optimizing charging operations has become imperative to ensure efficient and sustainable mobility. This study proposes an optimization model for the charging and routing of electric vehicles between Origin-Destination (OD) demands. The objective is to develop an efficient and reliable charging plan that ensures the successful completion of trips while considering the limited range and charging requirements of electric vehicles. This paper presents an integrated model for optimizing electric vehicle (EV) charging operations, considering additional factors of setup time, charging time, bidding price estimation, and power availability from three sources: the electricity grid, solar energy, and wind energy. One crucial aspect addressed by the model is the estimation of bidding prices for both day-ahead and intra-day electricity markets. The model also considers the total power availability from the electricity grid, solar energy, and wind energy. The alignment of charging operations with the capacity of the grid and prevailing bidding prices is essential.This ensures that the charging process is optimized and can effectively adapt to the available grid capacity and market conditions. The utilization of renewable energies led to a 42% decrease in the electricity storage capacity available in batteries at charging stations. Furthermore, this integration leads to a substantial cost reduction of approximately 69% compared to scenarios where renewable energy is not utilized. Hence, the proposed model can design renewable energy systems based on the required electricity capacity at charging stations. These findings highlight the compelling financial advantages associated with the adoption of sustainable power sources.