Duchenne muscular dystrophy (DMD) causes patients to suffer from ambulatory disability and cardiorespiratory failure, the latter of which leads to premature death. Due to its role in respiration, the diaphragm is an important muscle for study. A common method for evaluating diaphragm function is ex vivo force testing, which only allows for an end point measurement. In contrast, ultrasound shear wave elastography imaging (US-SWEI) can assess diaphragm function over time; however, US-SWEI studies in dystrophic patients to date have focused on the limbs without preclinical studies. In this work, we used US-SWEI to estimate the shear wave speed (SWS) in diaphragm muscles of healthy (WT) mice, mdx mice, and mdx mice haploinsufficient for utrophin (mdx-utr) at 6 and 12 months of age. Diaphragms were then subjected to ex vivo force testing and histological analysis at 12 months of age. Between 6 and 12 months, a 23.8% increase in SWS was observed in WT mice and a 27.8% increase in mdx mice, although no significant difference was found in mdx-utr mice. Specific force generated by mdx-utr diaphragms was lower than that of WT diaphragms following twitch stimulus. A strong correlation between SWS and collagen deposition was observed, as well as between SWS and muscle fiber size. Together, these data demonstrate the ability of US-SWEI to evaluate dystrophic diaphragm functionality over time and predict the biochemical and morphological make-up of the diaphragm. Additionally, our results highlight the advantage of US-SWEI over ex vivo testing by obtaining longitudinal measurements in the same subject. STATEMENT OF SIGNIFICANCE: In DMD patients, muscles experience cycles of regeneration and degeneration that contribute to chronic inflammation and muscle weakness. This pathology only worsens with time and leads to muscle wasting, including in respiratory and cardiac muscles. Because respiratory failure is a major contributor to premature death in DMD patients, the diaphragm muscle is an important muscle to evaluate and treat over time. Currently, diaphragm function is assessed using ex vivo force testing, a technique that only allows measurement at sacrifice. In contrast, ultrasonography, particularly shear wave elasticity imaging (USSWEI), is a promising tool for longitudinal assessment; however, most US-SWEI in DMD patients aimed for limb muscles only with the absence of preclinical studies. This work broadens the applications of US-SWE imaging by demonstrating its ability to track properties and function of dystrophic diaphragm muscles longitudinally in multiple dystrophic mouse models.