Abstract

The uncontrolled proliferation of cancer cells causes the growth of the tumor mass. Consequently, the normal surrounding tissue exerts a compressive force on the tumor mass to oppose its expansion. These stresses directly promote tumor metastasis and invasion and affect drug delivery.In the past, the mechanical behavior of solid tumors has been extensively studied using linear elastic and nonlinear hyperelastic constitutive models. In this study, we develop a two-dimensional biomechanical model based on the biphasic assumption of the solid matrix and fluid phase of the tissues. Heterogeneous vasculature and nonuniform blood perfusion are also investigated by incorporating in the model a necrotic core and a well-vascularized zone. The findings of our study demonstrate a significant difference between the linear and nonlinear tissue responses to stress, while the interstitial fluid pressure (IFP) distribution is found to be independent of the constitutive model. The proposed biphasic model may be useful for elasticity imaging techniques aiming at predicting stress and IFP in tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.