Quantum Mechanics’ entanglement and probabilistic behaviors are viewed in the light of Quantum Field Theory’s (QFT’s) advances made during the last century. In particular, Bohm’s version (B-EPR) of the Einstein, Podolsky, Rosen (EPR) experiment is now viewed with the aid of QFT’s modern description of electrons. In QFT, free electrons possess a bare core surrounded by a “dressing”. The dressing consists of one or more virtual particles/fields pulled from the vacuum during the bound electron’s parturition. In QFT, a bound electron’s freedom is aided by eliminating its energy losses from bremsstrahlung. The paper develops a “Shimony” numerical model using QFT’s free electron structure with the aid of a “random vector paradigm” (RVP). The RVP simply expresses QFT’s free electron as a bare core surrounded by an EM dressing. Using this RVP, we imbue newly freed electrons with a vector-like EM spin property of 1/2. From this, the Shimony Monte Carlo computer analysis provides a detailed comparison of the B-EPR experiment as described by Bell. The entanglement property can serve to provide a way to transport shared encoded information. Overall, the electron dressing can convey random elements that may provide QM with its entanglement and probabilistic behaviors.
Read full abstract