Mule duck hatcheries have long reported varying degrees of unbalance in the sex ratio, with a preponderance of male mules at hatching. The aim of the present study was to assess the distributions of sex ratios at various stages of development in embryos originating from intra- and intergeneric crosses between parental lineages (Muscovy male×Muscovy female, Pekin male×Pekin female, Muscovy male×Pekin female or Mule, and Pekin male×Muscovy female or Hinny). In Experiment I, embryo sexing was performed on Days 1 and 5 of incubation (by multiplex PCR) and at hatching (by vent observation). The sex ratio was not significantly modified during the early stages of embryo development whatever the genetic origin ( P>0.05, Days 1 and Day 5) but our results in mule and hinny ducklings confirmed the preponderance of males among normally hatched ducklings originating from the intergeneric lineage (58.9 and 55.4% males in mules and hinnies, respectively; P<0.05 in both cases). Sex ratio (vent sexing) in second grade (cull) ducklings revealed that 68% of these ducklings were females ( P<0.05). In Experiment II, the distribution of sex ratio was also performed in mule duck eggs from 6 batches (400,000 eggs/batch) first examined for fertility (candling) on Day 18 of incubation. These results indicate that the percentage of males present in the population of normally hatched ducklings increases when fertility decreases. In addition, this experiment also revealed that 83.7–90.5% of viable male mule embryos develop up to hatching, compared to only 43.0–51.0% of female mule embryos. Given that a deviation in sex ratio during the first stages of incubation is unlikely (Experiment I), it is concluded that the skewed sex ratio of mule ducks at hatching is primarily due to increased late mortality in female mule embryos occurring between egg transfer and hatching. This mortality originated, at least in part, from the intergeneric origin of female mules, and was marked to a greater or lesser extent depending on the initial success of fertilization in a given batch, a possible indication that the initial quality of gametes may selectively exert its influence at the later stages of embryo development.
Read full abstract