Abstract

Stilbosis quadricustatella leafminers are microlepidopteran specialists of sand-live oak (Quercus geminata). These tiny moths produce one generation per year and have a parasitic life-cycle and long larval stage that develops entirely within a single oak leaf. Differences in host-plant age, phenotype, and phenology generate a coarse-grained, spatially heterogeneous environment for the leafminer population. Previous reciprocal transfers of leafminer eggs among mature oaks revealed that S. quadricustatella are locally adapted to individual oak trees. In this paper we use genetic markers and an extinction–recolonization experiment to explore further variation in leafminer population structure. Allozyme loci indicate significant interdemic genetic structure among recent colonists of new host trees, which weakens in the 10th generation and disappears by the 40th generation. In contrast, adaptive demic structure is evident by the 10th generation and is strong in the 40th generation, despite the potential for substantial intertree dispersal. We propose that host heterogeneity combined with leafminer fidelity to natal trees promotes divergent selection and rapid demic evolution on individual oaks, despite potentially high gene flow between the leafminers inhabiting them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call