The egg-laying performance of hens holds significant economic importance within the poultry industry. Broody inheritance of the parent stock of chickens can result in poor options for the improvement of egg production, and is a phenomenon influenced by multiple genetic factors. However, few studies have been conducted to delineate the molecular mechanism of ovarian regression in brooding chickens. Here, we explored the pivotal genes responsible for the regulation of ovarian follicles in laying hens, using RNA-sequencing analysis on the small ovarian follicles from broody and laying chickens. Sequencing data analysis revealed the differential expression of 200 genes, with a predominant enrichment in biological processes related to cell activation and metabolism. Among these genes, we focused on solute carrier family 5 member 5 (SLC5A5), which exhibited markedly higher RNA expression levels in follicles from laying compared with broody chickens. Subsequent cellular function studies with knockdown of SLC5A5 in chicken ovarian follicle granulosa cells (GCs) led to the down-regulation of genes associated with cell proliferation and steroid hormone synthesis, and concurrent promotion of gene expression linked to apoptosis. These findings indicated that SLC5A5 deficiency led to the inhibition of proliferation, steroid hormone synthesis and secretion, and promotion of apoptosis in chicken GCs. Our study demonstrated a pivotal role for SLC5A5 in the development and function of chicken GCs, shedding light on its potential significance in the broader context of chicken ovarian follicle development, and providing a prospective target to improve the egg-laying performance of chickens via molecular marker-assisted breeding technology.
Read full abstract