Abstract

The insulin-like growth factor (IGF) system plays an indispensable role in embryonic and postnatal development in mammals. However, the effects of the system on growth, carcass, and egg-laying traits, and diversified selection have not been systematically studied in chickens. In the present study, firstly the composition and gene structures of the chicken IGF system were investigated using phylogenetic tree and conserved synteny analysis. Then the effects of the genetic variations in the IGF system genes on breeding of specialized varieties were explored by principal component analysis. In addition, the spatiotemporal expression properties of the genes in this system were analyzed by RT-qPCR and the functions of the genes in egg production performance and growth were explored by association study. Moreover, the effects of IGF-binding proteins 3 (IGFBP3) on skeletal muscle development in chicken were investigated by cell cycle analysis, 5-ethynyl-2'-deoxyuridine (EdU) and Cell Counting Kit-8 (CCK-8) assays. The results showed that the chicken IGF system included 13 members which could be classified into 3 groups based on their amino acid sequences: IGF binding proteins 1 to 5 and 7 (IGFBP1-5 and 7) belonged to the first group; IGF 1 and 2 (IGF1 and IGF2), and IGF 1 and 2 receptor (IGF1R and IGF2R) belonged to the second group; and IGF2 binding proteins 1-3 (IGF2BP1-3) belonged to the third group. The IGF2BP1 and 3, and IGFBP2, 3, and 7 genes likely contributed more to the formation of both the specialized meat-type and egg-type lines, whereas IGFBP1 and 5 likely contributed more to the formation of the egg-type lines. The SNPs in the IGF2BP3 and IGFBP2 and 5 genes were significantly associated with egg number, and SNPs in the IGFBP3 promoter region were significantly associated with body weight, breast muscle weight and leg muscle weight. The IGFBP3 inhibited proliferation but promoted differentiation of chicken primary myoblasts (CPMs). These results provide insights into the roles of the IGF system in the diversified selection of chickens. The SNPs associated with egg-laying performance, growth, and carcass traits could be used as genetic markers for breeding selection of chickens in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call